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PREFACE TO THE FIFTH EDITION

This book describes statistical models and methods for analyzing discrete time series and
presents important applications of the methodology. The models considered include the
class of autoregressive integrated moving average (ARIMA) models and various extensions
of these models. The properties of the models are examined and statistical methods for
model specification, parameter estimation, and model checking are presented. Applications
to forecasting nonseasonal as well as seasonal time series are described. Extensions of the
methodology to transfer function modeling of dynamic relationships between two or more
time series, modeling the effects of intervention events, multivariate time series modeling,
and process control are discussed. Topics such as state-space and structural modeling,
nonlinear models, long-memory models, and conditionally heteroscedastic models are
also covered. The goal has been to provide a text that is practical and of value to both
academicians and practitioners.

The first edition of this book appeared in 1970 and around that time there was a great
upsurge in research on time series analysis and forecasting. This generated a large influx of
new ideas, modifications, and improvements by many authors. For example, several new
research directions began to emerge in econometrics around that time, leading to what is
now known as time series econometrics. Many of these developments were reflected in the
fourth edition of this book and have been further elaborated upon in this new edition.

The main goals of preparing a new edition have been to expand and update earlier
material, incorporate new literature, enhance and update numerical illustrations through
the use of R, and increase the number of exercises in the book. Some of the chapters in
the previous edition have been reorganized. For example, Chapter 14 on multivariate time
series analysis has been reorganized and expanded, placing more emphasis on vector au-
toregressive (VAR) models. The VAR models are by far the most widely used multivariate
time series models in applied work. This edition provides an expanded treatment of these
models that includes software demonstrations.

Chapter 10 has also been expanded and updated. This chapter covers selected topics in
time series analysis that either extend or supplement material discussed in earlier chapters.

xix
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This includes unit roots testing, modeling of conditional heteroscedasticity, nonlinear mod-
els, and long memory models. A section of unit root testing that appeared in Chapter 7 of the
previous edition has been expanded and moved to Section 10.1 in this edition. Section 10.2
deals with autoregressive conditionally heteroscedastic models, such as the ARCH and
GARCH models. These models focus on the variability in a time series and are useful for
modeling the volatility or variability in economic and financial series, in particular. The
treatment of the ARCH and GARCH models has been expanded and several extensions
have been added.

Elsewhere in the text, the exposition has been enhanced by revising, modifying, and
omitting text as appropriate. Several tables have either been edited or replaced by graphs
to make the presentation more effective. The number of exercises has been increased
throughout the text and they now appear at the end of each chapter.

A further enhancement to this edition is the use of the statistical software R for model
building and forecasting. The R package is available as a free download from the R Project
for Statistical Computing at www.r-project.org. A brief description of the software is given
in Appendix Al.1 of Chapter 1. Graphs generated using R now appear in many of the
chapters along with R code that will help the reader reconstruct the graphs. The software
is also used for numerical illustration in many of the examples in the text.

The fourth edition of this book was published by Wiley in 2008. Plans for a new edition
began during the fall of 2012. I was deeply honored when George Box asked me to help him
with this update. George was my Ph.D. advisor at the University of Wisconsin-Madison
and remained a dear friend to me over the years as he did to all his students. Sadly, he was
rather ill when the plans for this new edition were finalized towards the end of 2012. He
did not have a chance to see the project completed as he passed away in March of 2013. 1
am deeply grateful for the opportunity to work with him and for the confidence he showed
in assigning me this task. The book is dedicated to his memory and to the memory of his
distinguished co-authors Gwilym Jenkins and Gregory Reinsel. Their contributions were
many and they are all missed.

I also want to express my gratitude to several friends and colleagues in the time series
community who have read the manuscript and provided helpful comments and suggestions.
These include Ruey Tsay, William Wei, Sung Ahn, and Raja Velu who have read Chapter 14
on multivariate time series analysis, and David Dickey, Johannes Ledolter, Timo Terésvirta,
and Niels Haldrup who have read Chapter 10 on special topics. Their constructive comments
and suggestions are much appreciated. Assistance and support from Paul Lindholm in
Finland is also gratefully acknowledged. The use of R in this edition includes packages
developed for existing books on time series analysis such as Cryer and Chan (2010),
Shumway and Stoffer (2011), and Tsay (2014). We commend these authors for making
their code and datasets available for public use through the R Project.

Research for the original version of this book was supported by the Air Force Office of
Scientific Research and by the British Science Research Council. Research incorporated
in the third edition was partially supported by the Alfred P. Sloan Foundation and by the
National Aeronautics and Space Administration. Permission to reprint selected tables from
Biometrika Tables for Statisticians, Vol. 1, edited by E. S. Pearson and H. O. Hartley is
also acknowledged. On behalf of my co-authors, I would like to thank George Tiao, David
Mayne, David Pierce, Granville Tunnicliffe Wilson, Donald Watts, John Hampton, Elaine
Hodkinson, Patricia Blant, Dean Wichern, David Bacon, Paul Newbold, Hiro Kanemasu,
Larry Haugh, John MacGregor, Bovas Abraham, Johannes Ledolter, Gina Chen, Raja
Velu, Sung Ahn, Michael Wincek, Carole Leigh, Mary Esser, Sandy Reinsel, and
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Meg Jenkins, for their help, in many different ways, in preparing the earlier editions.
A very special thanks is extended to Claire Box for her long-time help and support.

The guidance and editorial support of Jon Gurstelle and Sari Friedman at Wiley is
gratefully acknowledged. We also thank Stephen Quigley for his help in setting up the
project, and Katrina Maceda and Shikha Pahuja for their help with the production.

Finally, I want to express my gratitude to my husband Bert Beander for his encourage-
ment and support during the preparation of this revision.

GRETA M. LJUNG
Lexington, MA
May 2015






PREFACE TO THE FOURTH EDITION

It may be of interest to briefly recount how this book came to be written. Gwilym Jenkins
and I first became friends in the late 1950s. We were intrigued by an idea that a chemical
reactor could be designed that optimized itself automatically and could follow a moving
maximum. We both believed that many advances in statistical theory came about as a result
of interaction with researchers who were working on real scientific problems. Helping to
design and build such a reactor would present an opportunity to further demonstrate this
concept.

When Gwilym Jenkins came to visit Madison for a year, we discussed the idea with
the famous chemical engineer Olaf Hougen, then in his eighties. He was enthusiastic and
suggested that we form a small team in a joint project to build such a system. The National
Science Foundation later supported this project. It took 3 years, but suffice it to say, that
after many experiments, several setbacks, and some successes the reactor was built and it
worked.

As expected, this investigation taught us a lot. In particular, we acquired proficiency in
the manipulation of difference equations that were needed to characterize the dynamics of
the system. It also gave us a better understanding of nonstationary time series required for
realistic modeling of system noise. This was a happy time. We were doing what we most
enjoyed doing: interacting with experimenters in the evolution of ideas and the solution of
real problems, with real apparatus and real data.

Later there was fallout in other contexts, for example, advances in time series analysis,
in forecasting for business and economics, and also developments in statistical process
control (SPC) using some notions learned from the engineers.

Originally Gwilym came for a year. After that I spent each summer with him in England
at his home in Lancaster. For the rest of the year, we corresponded using small reel-to-reel
tape recorders. We wrote a number of technical reports and published some papers but
eventually realized we needed a book. The first two editions of this book were written
during a period in which Gwilym was, with extraordinary courage, fighting a debilitating
illness to which he succumbed sometime after the book had been completed.
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Later Gregory Reinsel, who had profound knowledge of the subject, helped to complete
the third edition. Also in this fourth edition, produced after his untimely death, the new
material is almost entirely his. In addition to a complete revision and updating, this fourth
edition resulted in two new chapters: Chapter 10 on nonlinear and long memory models
and Chapter 12 on multivariate time series.

This book should be regarded as a tribute to Gwilym and Gregory.

I was especially blessed to work with two such gifted colleagues.

GEORGE E. P. Box

Madison, Wisconsin
March 2008



PREFACE TO THE THIRD EDITION

This book is concerned with the building of stochastic (statistical) models for time series
and their use in important areas of application. This includes the topics of forecasting,
model specification, estimation, and checking, transfer function modeling of dynamic
relationships, modeling the effects of intervention events, and process control. Coincident
with the first publication of Time Series Analysis: Forecasting and Control, there was a
great upsurge in research in these topics. Thus, while the fundamental principles of the kind
of time series analysis presented in that edition have remained the same, there has been a
great influx of new ideas, modifications, and improvements provided by many authors.

The earlier editions of this book were written during a period in which Gwilym Jenkins
was, with extraordinary courage, fighting a slowly debilitating illness. In the present revi-
sion, dedicated to his memory, we have preserved the general structure of the original book
while revising, modifying, and omitting text where appropriate. In particular, Chapter 7
on estimation of ARMA models has been considerably modified. In addition, we have
introduced entirely new sections on some important topics that have evolved since the
first edition. These include presentations on various more recently developed methods for
model specification, such as canonical correlation analysis and the use of model selection
criteria, results on testing for unit root nonstationarity in ARIMA processes, the state-space
representation of ARMA models and its use for likelihood estimation and forecasting, score
tests for model checking, structural components, and deterministic components in time se-
ries models and their estimation based on regression-time series model methods. A new
chapter (12) has been developed on the important topic of intervention and outlier analysis,
reflecting the substantial interest and research in this topic since the earlier editions.

Over the last few years, the new emphasis on industrial quality improvement has strongly
focused attention on the role of control both in process monitoring and in process adjust-
ment. The control section of this book has, therefore, been completely rewritten to serve
as an introduction to these important topics and to provide a better understanding of
their relationship.
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The objective of this book is to provide practical techniques that will be available to
most of the wide audience who could benefit from their use. While we have tried to remove
the inadequacies of earlier editions, we have not attempted to produce here a rigorous
mathematical treatment of the subject.

We wish to acknowledge our indebtedness to Meg (Margaret) Jenkins and to our wives,
Claire and Sandy, for their continuing support and assistance throughout the long period
of preparation of this revision.

Research on which the original book was based was supported by the Air Force Office
of Scientific Research and by the British Science Research Council. Research incorporated
in the third edition was partially supported by the Alfred P. Sloan Foundation and by the
National Aeronautics and Space Administration. We are grateful to Professor E. S. Pearson
and the Biometrika Trustees for permission to reprint condensed and adapted forms of
Tables 1, 8, and 12 of Biometrika Tables for Statisticians, Vol. 1, edited by E. S. Pearson
and H. O. Hartley, to Dr. Casimer Stralkowski for permission to reproduce and adapt
three figures from his doctoral thesis, and to George Tiao, David Mayne, Emanuel Parzen,
David Pierce, Granville Wilson, Donald Watts, John Hampton, Elaine Hodkinson, Patricia
Blant, Dean Wichern, David Bacon, Paul Newbold, Hiro Kanemasu, Larry Haugh, John
MacGregor, Bovas Abraham, Gina Chen, Johannes Ledolter, Greta Ljung, Carole Leigh,
Mary Esser, and Meg Jenkins for their help, in many different ways, in preparing the
earlier editions.

GEORGE BOX AND GREGORY REINSEL



INTRODUCTION

A time series is a sequence of observations taken sequentially in time. Many sets of data
appear as time series: a monthly sequence of the quantity of goods shipped from a factory, a
weekly series of the number of road accidents, daily rainfall amounts, hourly observations
made on the yield of a chemical process, and so on. Examples of time series abound in
such fields as economics, business, engineering, the natural sciences (especially geophysics
and meteorology), and the social sciences. Examples of data of the kind that we will be
concerned with are displayed as time series plots in Figures 2.1 and 4.1. An intrinsic
feature of a time series is that, typically, adjacent observations are dependent. The nature
of this dependence among observations of a time series is of considerable practical interest.
Time series analysis is concerned with techniques for the analysis of this dependence. This
requires the development of stochastic and dynamic models for time series data and the use
of such models in important areas of application.

In the subsequent chapters of this book, we present methods for building, identifying,
fitting, and checking models for time series and dynamic systems. The methods discussed
are appropriate for discrete (sampled-data) systems, where observation of the system occurs
at equally spaced intervals of time.

We illustrate the use of these time series and dynamic models in five important areas of
application:

1. The forecasting of future values of a time series from current and past values.

2. The determination of the transfer function of a system subject to inertia—the deter-
mination of a dynamic input—output model that can show the effect on the output of
a system of any given series of inputs.

3. The use of indicator input variables in transfer function models to represent and
assess the effects of unusual intervention events on the behavior of a time series.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins,
Gregory C. Reinsel, and Greta M. Ljung
© 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.
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4. The examination of interrelationships among several related time series variables of
interest and determination of appropriate multivariate dynamic models to represent
these joint relationships among the variables over time.

5. The design of simple control schemes by means of which potential deviations of
the system output from a desired target may, so far as possible, be compensated by
adjustment of the input series values.

1.1 FIVE IMPORTANT PRACTICAL PROBLEMS

1.1.1 Forecasting Time Series

The use at time ¢ of available observations from a time series to forecast its value at some
future time ¢ 4 / can provide a basis for (1) economic and business planning, (2) production
planning, (3) inventory and production control, and (4) control and optimization of industrial
processes. As originally described by Holt et al. (1963), Brown (1962), and the Imperial
Chemical Industries (ICI) monograph on short term forecasting (Coutie, 1964), forecasts
are usually needed over a period known as the lead time, which varies with each problem.
For example, the lead time in the inventory control problem was defined by Harrison (1965)
as a period that begins when an order to replenish stock is placed with the factory and lasts
until the order is delivered into stock.

We will assume that observations are available at discrete, equispaced intervals of
time. For example, in a sales forecasting problem, the sales z, in the current month ¢ and
the sales z;_y, z,_5,2;_3, ... in previous months might be used to forecast sales for lead
times / = 1,2,3,...,12 months ahead. Denote by Z,(/) the forecast made at origin t of
the sales z,,; at some future time ¢ + /, that is, at lead time I. The function 2,(/), which
provides the forecasts at origin # for all future lead times, based on the available information
from the current and previous values z,, z,_;, Z,_5, Z;_3, ... through time ¢, will be called the
forecast function at origin t. Our objective is to obtain a forecast function such that the mean
square of the deviations z,,; — Z,(/) between the actual and forecasted values is as small as
possible for each lead time 1.

In addition to calculating the best forecasts, it is also necessary to specify their accuracy,
so that, for example, the risks associated with decisions based upon the forecasts may
be calculated. The accuracy of the forecasts may be expressed by calculating probability
limits on either side of each forecast. These limits may be calculated for any convenient
set of probabilities, for example, 50 and 95%. They are such that the realized value of the
time series, when it eventually occurs, will be included within these limits with the stated
probability. To illustrate, Figure 1.1 shows the last 20 values of a time series culminating at
time ¢. Also shown are forecasts made from origin # for lead times / = 1,2, ..., 13, together
with the 50% probability limits.

Methods for obtaining forecasts and estimating probability limits are discussed in detail
in Chapter 5. These forecasting methods are developed based on the assumption that the
time series z; follows a stochastic model of known form. Consequently, in Chapters 3
and 4 a useful class of such time series models that might be appropriate to represent the
behavior of a series z;, called autoregressive integrated moving average (ARIMA) models,
are introduced and many of their properties are studied. Subsequently, in Chapters 6, 7,
and 8 the practical matter of how these models may be developed for actual time series data
is explored, and the methods are described through the three-stage procedure of tentative
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FIGURE 1.1 Values of a time series with forecast function and 50% probability limits.

model identification or specification, estimation of model parameters, and model checking
and diagnostics.

1.1.2 Estimation of Transfer Functions

A topic of considerable industrial interest is the study of process dynamics discussed, for
example, by Astrom and Bohlin (1966, pp. 96—111) and Hutchinson and Shelton (1967).
Such a study is made (1) to achieve better control of existing plants and (2) to improve the
design of new plants. In particular, several methods have been proposed for estimating the
transfer function of plant units from process records consisting of an input time series X,
and an output time series Y,. Sections of such records are shown in Figure 1.2, where the
input X, is the rate of air supply and the output Y; is the concentration of carbon dioxide
produced in a furnace. The observations were made at 9-second intervals. A hypothetical
impulse response function v i J = 0, 1,2, ..., which determines the transfer function for the
system through a dynamic linear relationship between input X, and output Y, of the form
Y, = 2;‘;0 v;X,_;, is also shown in the figure as a bar chart. Transfer function models that
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FIGURE 1.2 Input and output time series in relation to a dynamic system.
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relate an input process X, to an output process Y; are introduced in Chapter 11 and many
of their properties are examined.

Methods for estimating transfer function models based on deterministic perturbations of
the input, such as step, pulse, and sinusoidal changes, have not always been successful. This
is because, for perturbations of a magnitude that are relevant and tolerable, the response
of the system may be masked by uncontrollable disturbances referred to collectively as
noise. Statistical methods for estimating transfer function models that make allowance for
noise in the system are described in Chapter 12. The estimation of dynamic response is of
considerable interest in economics, engineering, biology, and many other fields.

Another important application of transfer function models is in forecasting. If, for
example, the dynamic relationship between two time series Y; and X, can be determined,
past values of both series may be used in forecasting Y;. In some situations, this approach
can lead to a considerable reduction in the errors of the forecasts.

1.1.3 Analysis of Effects of Unusual Intervention Events to a System

In some situations, it may be known that certain exceptional external events, intervention
events, could have affected the time series z, under study. Examples of such interven-
tion events include the incorporation of new environmental regulations, economic policy
changes, strikes, and special promotion campaigns. Under such circumstances, we may
use transfer function models, as discussed in Section 1.1.2, to account for the effects of
the intervention event on the series z,, but where the ‘‘input’’ series will be in the form
of a simple indicator variable taking only the values 1 and O to indicate (qualitatively) the
presence or absence of the event.

In these cases, the intervention analysis is undertaken to obtain a quantitative measure
of the impact of the intervention event on the time series of interest. For example, Box
and Tiao (1975) used intervention models to study and quantify the impact of air pollution
controls on smog-producing oxidant levels in the Los Angeles area and of economic
controls on the consumer price index in the United States. Alternatively, the intervention
analysis may be undertaken to adjust for any unusual values in the series z, that might
have resulted as a consequence of the intervention event. This will ensure that the results
of the time series analysis of the series, such as the structure of the fitted model, estimates
of model parameters, and forecasts of future values, are not seriously distorted by the
influence of these unusual values. Models for intervention analysis and their use, together
with consideration of the related topic of detection of outlying or unusual values in a time
series, are presented in Chapter 13.

1.1.4 Analysis of Multivariate Time Series

For many problems in business, economics, engineering, and physical and environmental
sciences, time series data may be available on several related variables of interest. A more
informative and effective analysis is often possible by considering individual series as
components of a multivariate or vector time series and analyzing the series jointly. For
k-related time series variables of interest in a dynamic system, we may denote the series as
Zigs Zogs -+ » Zggs a0d let Z, = (zy,, ... , 2;,)’ denote the k X 1 time series vector at time 7.
Methods of multivariate time series analysis are used to study the dynamic relationships
among the several time series that comprise the vector Z,. This involves the development
of statistical models and methods of analysis that adequately describe the interrelationships
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among the series. Two main purposes for analyzing and modeling the vector of time series
jointly are to gain an understanding of the dynamic relationships over time among the
series and to improve accuracy of forecasts for individual series by utilizing the additional
information available from the related series in the forecasts for each series. Multivariate
time series models and methods for analysis and forecasting of multivariate series based
on these models are considered in Chapter 14.

1.1.5 Discrete Control Systems

In the past, to the statistician, the words ‘‘process control’” have usually meant the quality
control techniques developed originally by Shewhart (1931) in the United States (see
also Dudding and Jennet, 1942). Later on, the sequential aspects of quality control were
emphasized, leading to the introduction of cumulative sum charts by Page (1957, 1961) and
Barnard (1959) and the geometric moving average charts of Roberts (1959). Such basic
charts are frequently employed in industries concerned with the manufacture of discrete
“‘parts’’ as one aspect of what is called statistical process control (SPC). In particular (see
Deming, 1986), they are used for continuous monitoring of a process. That is, they are used
to supply a continuous screening mechanism for detecting assignable (or special) causes
of variation. Appropriate display of plant data ensures that significant changes are quickly
brought to the attention of those responsible for running the process. Knowing the answer to
the question ‘‘when did a change of this particular kind occur?’” we may be able to answer
the question ‘‘why did it occur?’” Hence a continuous incentive for process stabilization
and improvement can be achieved.

By contrast, in the process and chemical industries, various forms of feedback and
feedforward adjustment have been used in what we will call engineering process control
(EPC). Because the adjustments made by engineering process control are usually computed
and applied automatically, this type of control is sometimes called automatic process
control (APC). However, the manner in which these adjustments are made is a matter of
convenience. This type of control is necessary when there are inherent disturbances or
noise in the system inputs that are impossible or impractical to remove. When we can
measure fluctuations in an input variable that can be observed but not changed, it may
be possible to make appropriate compensatory changes in some other control variable.
This is referred to as feedforward control. Alternatively, or in addition, we may be able
to use the deviation from target or ‘‘error signal’’ of the output characteristic itself to
calculate appropriate compensatory changes in the control variable. This is called feedback
control. Unlike feedforward control, this mode of correction can be employed even when
the source of the disturbances is not accurately known or the magnitude of the disturbance
is not measured.

In Chapter 15, we draw on the earlier discussions in this book, on time series and
transfer function models, to provide insight into the statistical aspects of these control
methods and to appreciate better their relationships and different objectives. In particular,
we show how some of the ideas of feedback control can be used to design simple charts
for manually adjusting processes. For example, the upper chart of Figure 1.3 shows hourly
measurements of the viscosity of a polymer made over a period of 42 hours. The viscosity
is to be controlled about a target value of 90 units. As each viscosity measurement comes
to hand, the process operator uses the nomogram shown in the middle of the figure to
compute the adjustment to be made in the manipulated variable (gas rate). The lower chart
of Figure 1.3 shows the adjustments made in accordance with the nomogram.
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FIGURE 1.3 Control of viscosity. Record of observed viscosity and of adjustments in gas rate
made using nomogram.

1.2  STOCHASTIC AND DETERMINISTIC DYNAMIC
MATHEMATICAL MODELS

The idea of using a mathematical model to describe the behavior of a physical phenomenon
is well established. In particular, it is sometimes possible to derive a model based on
physical laws, which enables us to calculate the value of some time-dependent quantity
nearly exactly at any instant of time. Thus, we might calculate the trajectory of a missile
launched in a known direction with known velocity. If exact calculation were possible,
such a model would be entirely deterministic.

Probably no phenomenon is totally deterministic, however, because unknown factors
can occur such as a variable wind velocity that can throw a missile slightly off course. In
many problems, we have to consider a time-dependent phenomenon, such as monthly sales
of newsprint, in which there are many unknown factors and for which it is not possible
to write a deterministic model that allows exact calculation of the future behavior of the
phenomenon. Nevertheless, it may be possible to derive a model that can be used to calculate
the probability of a future value lying between two specified limits. Such a model is called
a probability model or a stochastic model. The models for time series that are needed,
for example, to achieve optimal forecasting and control, are in fact stochastic models. It
is necessary in what follows to distinguish between the probability model or stochastic
process, as it is sometimes called, and the actually observed time series. Thus, a time series
Zy,Zy, ..., Zy Of N successive observations is regarded as a sample realization from an
infinite population of such time series that could have been generated by the stochastic
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process. Very often we will omit the word *‘stochastic’” from ‘‘stochastic process’’ and
talk about the ‘“process.”’

1.2.1 Stationary and Nonstationary Stochastic Models for Forecasting and Control

An important class of stochastic models for describing time series, which has received a
great deal of attention, comprises what are called stationary models. Stationary models
assume that the process remains in statistical equilibrium with probabilistic properties
that do not change over time, in particular varying about a fixed constant mean level
and with constant variance. However, forecasting has been of particular importance in
industry, business, and economics, where many time series are often better represented as
nonstationary and, in particular, as having no natural constant mean level over time. It is not
surprising, therefore, that many of the economic forecasting methods originally proposed
by Holt (1957, 1963), Winters (1960), Brown (1962), and the ICI monographs (Coutie,
1964) that used exponentially weighted moving averages can be shown to be appropriate
for a particular type of nonstationary process. Although such methods are too narrow to
deal efficiently with all time series, the fact that they often give the right kind of forecast
function supplies a clue to the kind of nonstationary model that might be useful in these
problems.

The stochastic model for which the exponentially weighted moving average forecast
yields minimum mean square error (Muth, 1960) is a member of a class of nonstationary
processes called autoregressive integrated moving average processes, which are discussed
in Chapter 4. This wider class of processes provides a range of models, stationary and
nonstationary, that adequately represent many of the time series met in practice. Our
approach to forecasting has been first to derive an adequate stochastic model for the
particular time series under study. As shown in Chapter 5, once an appropriate model has
been determined for the series, the optimal forecasting procedure follows immediately.
These forecasting procedures include the exponentially weighted moving average forecast
as a special case.

Some Simple Operators. We employ extensively the backward shift operator B, which
is defined by Bz, = z,_;; hence B"z, = z,_,,. The inverse operation is performed by
the forward shift operator F = B~! given by Fz, = z,,,; hence F"z, = z,,,,. Another
important operator is the backward difference operator, V, defined by Vz, = z, — z,_;.
This can be written in terms of B, since

Vz;,=2z,—z,_1=(0-B)z

Linear Filter Model. The stochastic models we employ are based on an idea originally
due to Yule (1927) that an observable time series z, in which successive values are highly
dependent can frequently be regarded as generated from a series of independent *‘shocks’’
a;. These shocks are random drawings from a fixed distribution, usually assumed normal
and having mean zero and variance 62. Such a sequence of independent random variables
a;,a;_1,0;_, ... 1s called a white noise process.

The white noise process a, is supposed transformed to the process z, by what is called a
linear filter, as shown in Figure 1.4. The linear filtering operation simply takes a weighted
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FIGURE 1.4 Representation of a time series as the output from a linear filter.

sum of previous random shocks a,, so that

Zi=H + a; + yia;_q + Yra;_n + .-
= u+w(Ba, (1.2.1)

In general, y is a parameter that determines the ‘‘level’” of the process, and
w(B)=1+y,B+y,B> + -

is the linear operator that transforms g, into z, and is called the transfer function of the filter.
The model representation (1.2.1) can allow for a flexible range of patterns of dependence
among values of the process {z,} expressed in terms of the independent (unobservable)
random shocks a,.

The sequence y, >, ... formed by the weights may, theoretically, be finite or infinite. If
this sequence is finite, or infinite and absolutely summable in the sense that 2;10 ly;| < oo,
the filter is said to be stable and the process z, is stationary. The parameter y is then the
mean about which the process varies. Otherwise, z, is nonstationary and u has no specific
meaning except as a reference point for the level of the process.

Autoregressive Models. A stochastic model that can be extremely useful in the represen-
tation of certain practically occurring series is the autoregressive model. In this model, the
current value of the process is expressed as a finite, linear aggregate of previous values
of the process and a random shock a,. Let us denote the values of a process at equally
spaced times ¢, t — 1, t =2, ... by z,, z,_, 2Z;_5,.... Also let Z, = z, — u be the series of
deviations from u. Then

Zt = ¢12t_1 + (l)zzt_z + -+ ([)pZt_p + a; (122)

is called an autoregressive (AR) process of order p. The reason for this name is that a linear
model

zZ= d)li] + (]525('2 + -+ ¢)po +a

relating a ‘‘dependent’’ variable z to a set of ‘‘independent’” variables xy, x5, ..., x - plus
arandom error term a, is referred to as a regression model, and z is said to be ‘‘regressed’’
ON X1, X, ..., X In (1.2.2) the variable z is regressed on previous values of itself; hence

the model is autoregressive. If we define an autoregressive operator of order p in terms of
the backward shift operator B by

$(B)=1~¢ B~ ¢,B> - —¢,B’
the autoregressive model (1.2.2) may be written economically as

d)(B)zt = a;
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The model contains p + 2 unknown parameters y, ¢p, o, ..., P, 0'3, which in practice
have to be estimated from the data. The additional parameter aZ is the variance of the white
noise process a,.

It is not difficult to see that the autoregressive model is a special case of the linear filter
model of (1.2.1). For example, we can eliminate Z,_; from the right-hand side of (1.2.2) by
substituting

L= Lotz 3+ Q% ta

Similarly, we can substitute for Z,_,, and so on, to yield eventually an infinite series in
the a’s. Consider, specifically, the simple first-order (p = 1) AR process, Z, = ¢Z,_; + a;.
After m successive substitutions of Z,_; = ¢Z,_;_; +a,_;, j = 1,...,m in the right-hand
side we obtain

. 1= 2
Z=¢"Z_ . ta, +da_, +d°a_,+ - +¢P"a,_,

In the limit as m — oo this leads to the convergent infinite series representation Z; =
Z;’io @’a,_; with y; = ¢/, j > 1, provided that |¢| < 1. Symbolically, in the general AR
case we have that

¢(B)Z, = a,
is equivalent to
£, = ¢ (B)a, = y(B)g,

with w(B) = ¢~1(B) = T2, v; B'.

Autoregressive processes can be stationary or nonstationary. For the process to be
stationary, the ¢’s must be such that the weights v, y,, ... in y(B) = ¢~ 1(B) form a
convergent series. The necessary requirement for stationarity is that the autoregressive
operator, §(B) = 1 — ¢ B — ¢, B> — - — ¢, BP, considered as a polynomial in B of degree
p, must have all roots of ¢(B) = 0 greater than 1 in absolute value; that is, all roots must
lie outside the unit circle. For the first-order AR process Z, = ¢Z,_; + a, this condition
reduces to the requirement that |¢| < 1, as the argument above has already indicated.

Moving Average Models. The autoregressive model (1.2.2) expresses the deviation Z, of
the process as a finite weighted sum of p previous deviations Z;,_j, Z;_5, ..., Z,_, of the
process, plus a random shock ag;. Equivalently, as we have just seen, it expresses Z; as an
infinite weighted sum of the a’s.

Another kind of model, of great practical importance in the representation of observed
time series, is the finite moving average process. Here we take Z,, linearly dependent on a
finite number g of previous a’s. Thus,

Zl = a, - Gla,_l - 92at_2 — e — ant_q (123)
is called a moving average (MA) process of order q. The name ‘‘moving average’’ is
somewhat misleading because the weights 1, -6, —0,, ..., —94, which multiply the a’s,
need not total unity nor need they be positive. However, this nomenclature is in common
use, and therefore we employ it.





